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We used nonlinear saturated feedback to regulate the motion of chaotic dynamical systems. We stud-
ied the case of the Hénon map by controlling both unstable equilibrium points and periodic orbits. A
key issue addressed is that of the geometry of the saturated feedback.

PACS number(s): 05.45.+b

INTRODUCTION

In recent years, there has been a growing interest in the
control of chaotic (both continuous- and discrete-time)
systems [1-9]. Although chaos is a beneficial feature in
heat- and mass-transport phenomena, in many situations
it is an undesirable phenomenon which may lead to vibra-
tions, irregular operation, and fatigue failure in mechani-
cal systems [6]. Given a chaotic system, one would like
to regulate its motion around a reference trajectory, com-
monly a low-period periodic orbit, in order to obtain im-
proved performance. A central observation is that a
chaotic attractor typically has embedded densely within
it an infinite number of unstable periodic orbits, in addi-
tion to unstable equilibrium points [2].

Departing from existing theories on robust control of
dynamical systems [10], it is possible, in principle, to con-
struct a feedback control which steers the dynamic of a
system to a desired target (equilibrium points, periodic
orbits, etc.). However, in practice such feedback leads
commonly to large, costly, and physically unfeasible al-
terations of the system [1]. Therefore most approaches to
control chaos must assume that only small temporal per-
turbation of accessible parameters are allowed. From a
control-theory viewpoint, the above implies a problem of
control with bounded inputs [12].

Ott, Grebogi, and Yorke (OGY) [2] reported the first
strategy to control chaos. The OGY methodology con-
sists in applying feedback control actions only when the
trajectory of the system is in a small neighborhood of a
given objective trajectory, so that parameter perturbation
boundedness is satisfied. Due to its local nature, OGY
control leads to poor performance with large transient
periods. Recently, Romeiras et al. [9] extended the OGY
methodology, allowing for a more general choice of the
feedback matrix. Such a feedback matrix is constructed
in base-to-pole placement techniques to assure local
asymptotic stability. In order to have small parameter
perturbations, they used a discontinuous saturation func-
tion. As in the OGY methodology, the feedback is linear
and local. We believe that local linear designs do not
take advantage of all the stabilization capacities of non-
linear systems.

As a step to approach the control of a chaotic system
with nonlinear feedback action, we study the control of

1063-651X/93/48(4)/3165(3)/$06.00 48

the Hénon map [11]. As objective trajectories, we take
both unstable fixed points and periodic orbits. Our feed-
back control is constructed in two stages. First, a non-
linear feedback is constructed which transforms the
Hénon map to a linear system, its global attractor being
the objective trajectory. Then, to satisfy the small pa-
rameter perturbation constraint, a saturation function is
introduced.

UNBOUNDED CONTROL
Consider the Hénon map x, , ;=F(x,,u) [11]:

Xin+1-X2,n >
5 (1)
Xon+1= X5, tBxy,+tu,

where u is an accessible parameter. It is well known that
for certain values of the parameter set (B,u), the system
(1) exhibits very complex behavior [1,4]. The feedback
u=u,(x ;v)=x§,n —Bx, ,+v, where v is a dummy input,
transforms the system (1) to the controllable input-output
linear map (see [10], and references therein) x; ,,,=v,
with input v and output x;. Given an arbitrary reference
trajectory {r,}, the controllability of x, ,,,=v implies
that one can design a linear feedback v =v,(r,) such that
the closed-loop system x, , +, =v,(r,) has {r,} as its glo-
bal attractor. Therefore the system (1) with feedback

=u,(x;v)=x3,—Bx, ,+v,(r,) has {r,} as its global
attractor. By defining the error of tracking as
€, =X;,, —Fy, it is possible to see that v =v,(r,) must be
giVCl’l by vn(rn )=_g1(x1,n T )_gZ(x2,n T +1)+rn+2’
where g, and g, are tunable parameters such that the
matrix

0 1
—81 —82

has its eigenvalues in the open unit circle.

BOUNDED CONTROL

Suppose that the parameter u is restricted to take only
small controlling temporal perturbations 8*. If we apply
the feedback u,(x;v) to system (1), the input u may take
arbitrary values, so that the small temporal perturbation
constraint is not necessarily satisfied. Let u=1# be a
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nominal input to system (1). Let us introduce the follow-
ing saturation function & :R—[# —8*,7 +8* ]

a—6* ifu—8*>u
Su)=1{u fu—08*<u=<u+8*

a+8* ifu>u+8*.

Then, |&(u,(x;v))—7|<8*. In this way, we obtain a
controlled map X, =Fg/(x,)=F(x,,8u,(x;v))),
which is continuous and piecewise smooth. At each time
n, & induces a partition of R? into three regions:

Ul={xER?: 7#—8*=<Zu,(x;v)<u+38*}
and

UNU)={xER?: u,(x;v)>a+8* (<u—8")},
with USU U, UU, =R2. The curves

ST (S, )={xER?: u,(x;v)=u+8* (1 —8%)}

define the saturation boundaries. In UY, F,(x,) behaves
as the controlled linear system x,.,;=v,(x,), while in
U} (U,;), Fg(x,) behaves as the noncontrolled system
(1) with input u =z +8* (7 —8%*).

Let {r,} be a stationary set of the system (1) with input
u=m. It is not difficult to see that r, € UQ. In this way,
the set {r,} is a (local) attractor of the map
X, +1=Fg(x,). Thus {r,} can be attained by means of
the saturated feedback §(u,(x;v)).

Consider the case of B=0.3 and u=#=1.29. With
this set of parameters, the system (1) has an unstable
equilibrium point x*=1{0.8384,0.8384} embedded in a
chaotic attractor A. Let {r,}={0.8384} be the refer-
ence trajectory. Assume that g, =g, =0, which implies
that the point x*, as an equilibrium point of
X, +1=Fg(x,), is stable with eigenvalues A;=A,=0.
Thus trajectories with initial condition close enough to
x* have a transient period {(7) of at most three. Figure 1
shows the chaotic attractor A and the embedded equilib-
rium point x*. Also shown are the saturation curves S,
and S, (which are the same for each time n) for 8*=0.1.
Observe that the set A N UY is destroyed by the feedback
$(u,(x;v)). In this way, iterations arriving close to x*
are immediately (in one or two iterations) stabilized by
the controller. Following a procedure analogous to the
one proposed by Ott, Grebogi, and Yorke [2], we calcu-
lated the transient period {7) as a function of the input
bandwidth 8*. Like in the results of Ott, Grebogi, and
Yorke, the () —8* behavior follows a power-law trend
for small §*.

From numerical simulations, it is apparent that x* is
the unique attractor for 8* &(0.092,0.185): trajectories
starting in the set A N[UTUU ] converge asymptoti-
cally to x*. However, at §*~0.092 a multistability ap-
pears: x* coexists with a chaotic attractor A ; (which is
not equal to A ). Figure 2 shows the geometry of the
x*—A, coexistence: observe that A, resembles
AN[U*UU™]. However, A, and AN[UTUU]
cannot be the same set. In fact, if A;=AN[U*UU"],
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FIG. 1. Chaotic trajectory of the Hénon map for #=1.29
and B=0.3. Also shown is the geometry of the saturated feed-

back $(u,(x;v)) for *=0.1. @ denotes the embedded equilib-
rium point x *=(0.8384,0.8384).

the embedding of x * in A would imply that there are tra-
jectories in /4 ; which converge asymptotically to x *, so
that A, would not be an attractor. For 8*>0.092, A,
evolves continuously to disappear at 8* ~0. 185 (crisis of
the chaotic attractor) where it is absorbed by the non-
saturation region UJ.

Next, we consider the issue of robustness against pa-
rameter uncertainties. Assume that B, is an estimate of
B. If B¥B,,, then the feedback &(u,(x;v)) does not
make the system (1) equivalent to a linear system. Thus
x* is no longer an equilibrium point of the controlled sys-
tem x,,,=Fg/(x,). However, numerical simulation
shows that the feedback &(u, (x;v)) is robust in the sense
that the trajectories are steered close to x *.

The system (1) has an unstable two-period periodic or-
bit P,=~[(1.3104,—0.6104),(—0.6104,1.3104)], embed-
ded in A. Let {r,}={r;,r,}={1.3104, —0.6104} be the
reference trajectory. Since {r,} is not a constant number,
S." and S, change at each time n. Figure 3 shows the
evolution of the iterates for §*=0.025. Like in the
equilibrium-point case, the trajectory converges to the
periodic orbit P, after a transient period induced by the
iteratesin U, U U, .

FIG. 2. Geometry of the coexistence of the (controlled) at-
tractor x * and the chaotic attractor A ;.
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FIG. 3. Time series for the stabilization of a period-2 orbit.

The initial condition is (xy,Xx,3)=(1, — 1), and the perturbation
bound §* =0.025.

USE OF DELAY COORDINATES

For a large set of periodically forced systems, it is pos-
sible to derive an explicit discrete-time model (induced by
a Poincaré section) which can be used to design nonlinear
controllers [9]. In general, such models may present
parametric and/or structural uncertainties. If one is able
to estimate the size of such uncertainties, robust control-
lers can be derived [13] which account for model/reality
deviation.

We now discuss the case where the dynamical equa-
tions are not known. In experimental studies of chaotic
dynamical systems, delay coordinates are often used to
represent the system state. It only requires measurement
of the time series of a single scalar state variable. Let
x (t) be such a state variable and Z (¢) be the delay coor-
dinate vector, which is given by

Z()=(x(t),x(t—T),x(t—2T),...,x(t—MT)),

where T is the delay time. If n is the dimensionality of
the dynamical system, for M =2n the vector Z(?) is

generically a global one-to-one representation of the sys-
tem. In the presence of parameter variations u;, delay
coordinates lead to a map of the form [14]:

Z, =G Zju;—_yy oo Uy U;) (2)

Observe that the state of the system (2) depends on the
last »+1=1 values of the parameter u. Reyl et al. [15]
used the model (2) to fit the return map of experimental
NMR laser dynamics. This map was used to control the
dynamics of a NMR laser by means of linear feedback.

Define  the dummy coordinates  y,;=u;_y,
k=1,...,r. Then the map (2) can be written as the fol-
lowing augmented system:

Z, 1\ =G(Z,y;u;),
Yi+1:SYi+Bui ,

(3)

where Y;=(y,;;,...,;,)* B=(1,0,...,0)* (% denotes
transpose operation), and S is an r Xr matrix, which is
given by

00 00
10 00
S= . F
o0 --- 10

In the coordinates (Z,Y), the map (3) depends only on
the actual value of the parameter u;. Given the fitted
map (3), and if the system is controllable, it is possible to
design a saturated nonlinear feedback u;=&(F(Z;,Y;))
which renders the dynamical system asymptotically
stable to a periodic orbit.

In conclusion, we have shown that a saturated non-
linear feedback is able to stabilize chaotic systems. This
methodology does not require that the objective trajecto-
ry {r, ] be embedded in a chaotic attractor [2]. However,
input saturation may introduce additional behaviors,
such as multistability [12].
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